Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their tryptic fragments

Hanna Brzeska, Sergey Vu. Venyaminov*, Zenon Grabarek and Witold Drabikowski

Nencki Institute of Experimental Biology, Department of Biochemistry of Nervous System and Muscle, Warsaw, 3 Pasteur Str., Poland and *Institute of Protein Research, USSR Academy of Sciences, 142292 Poustchino, Moscow Region, USSR

Received 7 January 1983

Abstract and keywords not received

1. INTRODUCTION

Troponin C and calmodulin belong to the family of homologous intracellular calcium binding proteins. Each is composed of 4 calcium-binding domains. In the case of skeletal muscle troponin C, 2 of calcium-binding sites are high-affinity sites which also bind Mg²⁺ and 2 others are low-affinity, so-called 'Ca²⁺-specific' sites [1]. In calmodulin molecule the affinity constants for all 4 calcium sites are similar to each other, having values roughly between those of the low and high affinity sites of troponin C [2,3]. Mg²⁺ competes with Ca²⁺ for all binding sites in calmodulin [2,3]. Binding of Ca²⁺ to troponin C and calmodulin causes large conformational changes in the secondary structure of the molecules.

Tryptic cleavage of troponin C and calmodulin [4-6] has enabled us to analyse Ca^{2+} - and Mg^{2+} -induced conformational changes in the particular parts of these 2 proteins separately. The increase of α -helix content caused by the binding of Ca^{2+} to troponin C is much higher for the C-terminal part of molecule, containing high affinity binding sites, than for the N-terminal part, containing low affinity binding sites [7]. The difference between the extent of Ca^{2+} -dependent increase of α -helix in the N- and C-terminal halves of calmodulin is much smaller than that in troponin C [8,9].

To obtain additional information about the effect of Ca²⁺ and Mg²⁺ on the secondary structure of Ca²⁺-binding proteins we have studied ther-

mostability of skeletal muscle troponin C and calmodulin using circular dichroism technique and the influence of Ca²⁺- and Mg²⁺-binding on thermal unfolding. The use of the tryptic fragments of both calcium-binding proteins enabled to localise the structural changes caused by temperature changes in the particular parts of both molecules.

2. MATERIALS AND METHODS

Bovine brain calmodulin [10] and rabbit skeletal troponin C [11] were prepared as described. The fragments were prepared as in [4-6]. The purity of proteins and their fragments were checked by SDSand urea-polyacrylamide gel trophoresis. Measurement of the dependence of ellipticity at 222 nm (θ_{222}) on temperature was performed in 0.93 nm rectangular cell using J-41A Jasco Spectropolarimeter. The rate of heating was 0.9°C/min and the temperature changes were monitored by a thermistor inserted in the thermostated cell holder. The highest available temperature using a water thermostat was 92°C.

The melting curves were plotted in an XY recorder in which the X coordinate was the linear temperature scale driven by the thermistor voltage and the Y coordinate was driven by the ellipticity signal from J-41A instrument. The first derivatives of the curves showing the changes of θ_{222} depending on the temperature $(d\theta_{222}/dt)$ were obtained with the HP 9825 A computer equipped with digitizer and plotter. The positions of maxima of the circular dichroism thermal unfolding profiles

so obtained $(T_{1/2})$ were corrected for the difference between the temperature in the cell holder and that of the measured solution in the cell. Since only values θ (ellipticity) not $[\theta]$ (mean residual ellipticity) were measured so heights of maxima are not comparable and all curves in the figures are normalized. Protein was 0.2-0.5 mg/ml. All measurements were performed in 20 mM Hepes buffer, pH 7.0 (whose thermal pH dependency is $pK_a/1^{\circ}C = -0.014$) in the presence of 1 mM CaCl₂ or 1 mM EGTA and 5 mM Mg²⁺ or 2 mM EDTA.

3. RESULTS

The size of the fragments used and their position in the original protein molecule are given in table 1. The TR-C fragments (i.e., fragments obtained by digestion of the proteins in the presence of Ca^{2+}) correspond in both cases to the two halves of each protein studied (i.e., TR₁-C fragment to the N-terminal and TR₂-C to the C-terminal half). In case of calmodulin the TR-E fragments (i.e., the fragments obtained upon cleavage in the presence of EDTA) were also analysed. The TR₁-E fragment contains in addition to two N-terminal domains the third loop as well and a part of α -helical fragment following the loop. TR₃-E contains only one entire domain (the fourth one) and a piece of α -helical fragment from the third domain.

Upon binding Ca²⁺ not only calmodulin and troponin C [12,13], but also both TR-C as well as TR₁-E fragments are extremely thermally stable. At $\leq 90^{\circ}$ C, the derivatives show no maxima and only a slow increase due to a slight change in the ellipticity with temperature. An example of this type of the curve is given for TR₁-E fragment in fig.3. The ratio of $\theta_{90\circ}$: $\theta_{12\circ}$ was in all cases in the range of 0.58–0.84 (table 1).

Fig.1 shows the first derivatives of the circular thermal unfolding profiles calmodulin, troponin C and their TR-C fragments measured in the presence of EDTA. The calmodulin thermal unfolding profile has a maximum at 55°C with a shoulder at ~30°C. The $T_{1/2}$ -values of TR₁-C and TR₂-C of calmodulin are somewhat lower than those of intact calmodulin, and show no shoulder. TR2-C has a higher halfwidth of transition than TR₁-C and, in addition, the shape of its thermal unfolding profile is much more asymmetric. The $T_{1/2}$ of intact troponin C in the presence of EDTA is the same as that of calmodulin (55°C), but for TR₁-C the $T_{1/2}$ is higher (60°C) than that for the homologous calmodulin fragment. On the other hand, the TR₂-C fragment of troponin C has very low $T_{1/2}$ (20°C), much lower than the homologous calmodulin fragment. The ratio of θ_{90} : θ_{12} for proteins and all TR-C fragments measured in the presence of EDTA is 0.24-0.38.

Table 1

Parameters of thermal unfolding for calmodulin, troponin C and their fragments

Protein	Fragment	Amino acid residues	$T_{1/2}$ (°C) in the presence of			$\theta_{90^{\circ}}$: $\theta_{12^{\circ}}$ ratio in the presence of		
			Ca ²⁺	Mg ²⁺	EDTA	Ca ²⁺	Mg ²⁺	EDTA
Calmodulin		1-148	>90	>90	55	0.72	0.49	0.32
	TR ₁ -C	1- 77	>90	80	49	0.75	0.35	0.25
	TR ₂ -C	78-148	>90	76	46	0.84	0.51	0.33
	TR ₁ -E	1-106	>90	88	58	0.83	0.60	0.24
	TR ₃ -E	107-148	45	_		0.45	anam.	_
Troponin C		1-159	>90	72	55	0.58	0.43	0.38
	TR ₁ -C	9- 84	>90	68	60	0.67	0.36	0.33
	TR ₂ -C	89-159	>90	83	~ 20	0.72	0.45	0.34

Measurements were performed in 20 mM Hepes buffer (pH 7.0) and in the presence of 1 mM Ca²⁺ (in case of TR₃-E fragment 5 mM Ca²⁺) or 1 mM EGTA and 5 mM Mg²⁺, or 2 mM EDTA

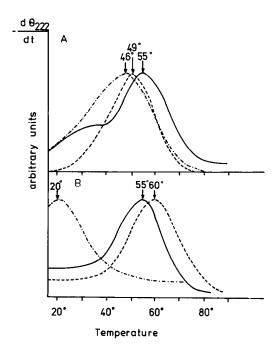


Fig. 1. Circular dichroism thermal unfolding profiles of calmodulin (A) and troponin C (B) and their TR-C fragments in EDTA. Measurements were performed in 20 mM Hepes buffer (pH 7.0) with addition of 2 mM EDTA: intact proteins (——); TR₁-C fragments (----); TR₂-C fragments (----).

Fig.2 shows that Mg2+ partially stabilizes the structure of both proteins as well as their TR-C fragments. The stabilization caused by Mg²⁺ is higher for intact calmodulin than for troponin C. Both TR₁-C and TR₂-C fragments of calmodulin are similarly affected by Mg²⁺. The effect of Mg²⁺ on the TR-C fragments of troponin C is different (fig.2). TR₁-C is stabilized by Mg²⁺ only to a very small degree; i.e., its $T_{1/2}$ -value in the presence of Mg²⁺ is only few degrees higher than that in the absence of bivalent cations. In contrast the effect of Mg²⁺ on TR₂-C is very pronounced. This fragment, which in the absence of divalent cations is unusually unstable, becomes in the presence of Mg²⁺ the most stable among all TR-C fragments (table 1). The ratio of θ_{90} : θ_{12} , for the samples measured in the presence of Mg^{2+} is between that for EDTA and for Ca2+.

Fig.3 shows the CD thermal unfolding profiles of the TR-E fragments of calmodulin. The TR₁-E fragment behaves similarly to the TR₁-C fragment.

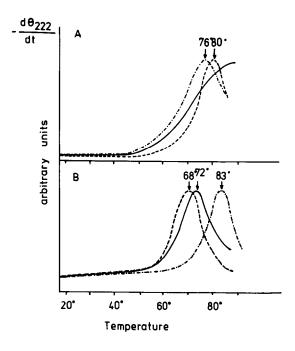


Fig. 2. Circular dichroism thermal unfolding profiles of calmodulin (A), troponin C (B) and their TR-C fragments in Mg²⁺. Measurements were performed in 20 mM Hepes buffer (pH 7.0) with addition of 1 mM EGTA and 5 mM Mg²⁺: intact proteins (——); TR₁-C fragments (——).

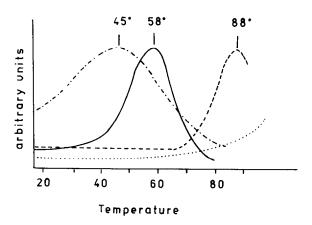


Fig.3. Circular dichroism thermal unfolding profiles of TR-E calmodulin fragments. Measurements were performed in the 20 mM Hepes (pH 7.0). TR₁-E fragment in the presence of: 2 mM EDTA (——); 1 mM EGTA and 5 mM Mg²⁺ (----); or 1 mM Ca²⁺ (····); TR₃-E fragment in the presence of 5 mM Ca²⁺ (----).

The TR₃-E fragment composed of only one Ca^{2+} -binding domain is in the presence of EDTA and/or Mg^{2+} almost completely unfolded at 11°C [9] and, hence, does not show any increase of ellipticity with the increase of temperature. In the presence of Ca^{2+} a very broad transition with the $T_{1/2}$ near 45°C has been observed for this fragment.

All changes of the ellipticity of the samples due to heating, except those of TR_3 -E fragment of calmodulin, are fully reversible when Ca^{2+} or Mg^{2+} were present. When heating was performed in the presence of EDTA, the differences between values of ellipticity before and after heating and subsequent recooling were $\leq 8\%$ for all fragments. The changes of the ellipticity of TR_3 -E were only partially reversible even when heating was performed in the presence of Ca^{2+} .

4. DISCUSSION

The circular dichroism spectra and values of $[\theta]_{222}$ for both proteins studied and their tryptic fragments measured at constant temperature at various ionic conditions appeared in [7,9].

Application of the ratio θ_{900} : θ_{120} given in table 1 to those values of ellipticity enables us to calculate the ellipticity at 90°C and hence, to obtain information about the remaining secondary structure upon heating. Thus, at 90°C in the presence of EDTA both proteins and all fragments are virtually completely unfolded. In the presence of Mg²⁺, however, a large part of helical structures remains at 90°C.

Previous results have indicated that cleavage of calmodulin and troponin C in half does not lead to any significant conformational changes and the secondary structure of the fragments is similar to that of the corresponding parts in the intact molecules [7,9]. Since, however, TR-C fragments of both proteins have values of $T_{1/2}$ in the presence of Ca^{2+} above 90°C as the intact molecules, comparison of the structure can be performed only for the thermal stability in the presence of Mg^{2+} and in the absence of bivalent cations.

In the presence of EDTA the $T_{1/2}$ values are the same for both proteins except that the thermal unfolding profile of calmodulin shows a shoulder at 30°C, the origin of which is unclear at this moment. A similar shoulder was found in cardiac

troponin C [12] without explanation. The $T_{1/2}$ value of skeletal muscle troponin C in the presence of EDTA found in this work is somewhat lower than that in [12]. This difference is probably caused by different methods of the measurement of temperature of the sample.

In the presence of EDTA the N-terminal fragments of both proteins are more stable than the C-terminal fragments. This difference is very small in case of calmodulin but unusually high in case of troponin C. These results provide additional information to the previous studies indicating that N-terminal halves of both proteins are more folded than their C-terminal halves in the presence of EDTA and that this is more pronounced in troponin C [7,9]. That two halves of troponin C differ considerably in their melting temperature can be also predicted from measurements of the melting profiles of intact troponin C using scanning calorimetry [13].

The binding of Mg²⁺ causes the increase of thermostability of both proteins and their fragments to a lower degree than the binding of Ca²⁺. The TR₂-C fragment of troponin C, containing the so-called Ca²⁺-Mg²⁺-binding sites, shows the highest effect of Mg²⁺ whereas the lowest effect is observed for TR₁-C fragment of troponin C containing low affinity sites. In the calmodulin molecule the effect of Mg²⁺ is similar for both N- and C-terminal halves. These results are in agreement with those of the fluorescence properties and secondary structure changes obtained for both proteins [7,9] and with the data obtained by NMR [2] showing that there is competition in all 4 calcium-binding sites between Ca²⁺ and Mg²⁺.

The thermal denaturation profile of TR₃-E of calmodulin, composed of only one complete Ca^{2+} -binding domain, differs considerably from those of all other fragments. Under the best conditions (i.e., in the presence of Ca^{2+}) the $T_{1/2}$ is only 45°C. This observation supports all other results [9] which have stressed the importance of the interaction between domain III and IV and have indicated that a single Ca^{2+} -binding domain is stabilised by Ca^{2+} to a much lower degree than a segment containing two domains.

Independently of the transition midpoints of the melting curves of the proteins studied, there is a slow constant increase of ellipticity with the increase of temperature (e.g., the thermal profile of

TR₃-E fragments in fig.3). This phenomenon may be one of the reasons for the differences in ellipticity values observed for calcium-binding proteins, since measurements were made over 10–25°C.

REFERENCES

- [1] Potter, J.D., Seidel, J.D., Leavis, P.C., Lehrer, S. and Gergely, J. (1974) in: Calcium Binding Proteins (Drabikowski, W. et al. eds) pp.129-152, Elsevier Biomedical, Amsterdam, New York.
- [2] Delville, A., Grandjean, J., Laszlo, P., Brzeska, H. and Drabikowski, W. (1980) Eur. J. Biochem. 109, 515-522.
- [3] Gouch, T.H. and Klee, C.B. (1980) Biochemistry 19, 3692-3698.
- [4] Drabikowski, W., Kuźnicki, J. and Grabarek, Z. (1977) Biochim. Biophys. Acta 485, 124-133.
- [5] Grabarek, Z., Drabikowski, W., Vinokurov, L. and Lu, R.C. (1981) Biochim. Biophys. Acta 671, 227-234.

- [6] Walsh, M., Stevens, F.C., Kuźnicki, J. and Drabikowski, W. (1977) J. Biol. Chem. 252, 7440-7443.
- [7] Leavis, P.C., Rosenfeld, S.S., Gergely, J., Grabarek, Z. and Drabikowski, W. (1978) J. Biol. Chem. 253, 5452-5459.
- [8] Brzeska, H., Venyaminov, S. and Drabikowski, W. (1980) in: Calcium Binding Proteins: Structure and Function (Siegel, F.L. et al. eds) pp.207-209, Elsevier Biomedical, Amsterdam, New York.
- [9] Drabikowski, W., Brzeska, H. and Venyaminov, S. (1982) J. Biol. Chem. 257, 11584-11590.
- [10] Watterson, D.M., Harrelson, W.G. jr, Keller, P.P., Sharief, F. and Vanaman, T.C. (1976) J. Biol. Chem. 251, 4501-4513.
- [11] Drabikowski, W., Dabrowska, R. and Baryłko, B. (1973) Acta Biochim. Polon. 20, 181-199.
- [12] McCubbin, W.D., Hincke, M.T. and Kay, C.M. (1980) Can. J. Biochem. 58, 683-691.
- [13] Tsalkova, T.N. and Privalov, P.L. (1980) Biochim. Biophys. Acta 624, 196-204.